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1.  Introduction 

• We learned that a probability distribution provides a way to assign probabilities to the 

possible values of the random variable. 

• In this chapter, we discuss about probability distributions where statistics, such as the 

mean, will be the random variable. 

• We use probability distributions to make statements regarding the statistic. 

 

2. Sampling distributions and the central limit theorem 

• Random sample: The random variables ��, ��, … , �� are a random sample of size n if they 

are independent random variables, and every		��	has the same probability distribution (they 

are drawn from the same population). 

• Statistic: A statistic is any function (mean, variance) of the observations in a random sample. 

A statistic is a random variable, and it has a probability distribution. 

• The sampling distribution of a statistic is a probability distribution for all possible values of 

the statistic (mean, variance …) computed from a sample of size n. For example, the 

probability distribution of �	 is called the sampling distribution of the mean.  

• The sampling distribution of the sample mean 
� is the probability distribution of all possible 

values of the random variable �	 computed from a sample of size n from a population with 

mean µ and standard deviation σ. 

• A point estimate of some population parameter � is a single numerical value �
  of a statistic 

�
. The statistic �
 is called the point estimator. The data from the sample is used to compute 

a value of a sample statistic that serves as an estimate of a population parameter. 

• Statistical inference is concerned with making decisions about a population based on the 

information contained in a random sample from that population.  
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2.1 The mean and standard deviation of the sampling distribution of 
� 

• Suppose that a random sample of size n is drawn from a population with mean µ and standard 

deviation σ. Then, the sampling distribution of �	 will have mean ��̅ = 	� and standard 

deviation ��	 =	 �√�. 

2.2 The Central Limit Theorem 

• If ��, ��, … , ��			is a random sample of size n taken from a population (either finite or 

infinite) with mean �  and finite variance  ��, and if �	  is the sample mean, the limiting form 

of the distribution of  

� = �	 − 	�� √�⁄ 																																																																																												(1) 

as  � → ∞	(� ≥ 30), is the standard normal distribution N(0, 1). 

Example 1 

The results of an exam are approximately normally distributed with mean µ=100 and standard  

deviation σ =15. Find the probability that a random sample of size n=10 has mean greater than 

110.   

Note:  P(z ≤ 2.11)=0.9826 

Solution: 

We need to find P(�	 >110).  
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We have ��	 = 	100 and ��	 = 	 �√� = �#
√�$ = 4.743 

We convert �̅ to z-score:  

 ( = �	)*+�
�+� = ��$)�$$

,.-,. = 2.11 

P(�	 >110)= P(Z > 2.11) = 1-P(Z ≤ 2.11) 

From table: P(Z ≤ 2.11) = 0.9826 

P(�	 >110) = 1-0.9826 = 0.0174 

 

Example 2 

A random variable X has: 

 	0�(�) = 1
�
� 								4 ≤ � ≤ 60			45! 6789:6  

Find the distribution of the sample mean of a random sample of size n=40. 

 

Solution: 

X has mean and variance: 

�� = ;<�= = > �0�(�)?�∞

)∞
  

 = > �
� �	?� = �

� . �
@
� |,BB

, = �
, (36 − 16) = 5 

��� = ;<��= − ;<�=� 

= D 1
2

B
,

��?� − 25 = 12 .
1
3�.|,B − 25 = 0.333 

 

According to the central limit theorem, the sample distribution is approximately normal with 

mean ��	 = 5	 and variance  ��	� = �+@
� = $....

,$ = 0.008	F7		��	 = 0.091  

 

 

 

 

0 2.11 
z 
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3. General concepts of point estimation 

• An estimator should be close in some sense to the true value of the unknown parameter. 

• The point estimator �
 is an unbiased estimator of the parameter � if  E[�
= = �. 

• If the estimator is biased, then the difference E[�
= − � is called the bias of the estimator �
. 
 

 

3.1  Variance of a point estimator 

• Suppose that	�
� and �
� are unbiased 

estimator of �. If �
� has smaller variance than 

�
� then  �
� is more likely to produce an 

estimate close to �. 

• The unbiased estimator with smallest 

variance is called the minimum variance 

unbiased estimator (MVUE). 

• If ��, ��,…….	�� is a random sample of size n from a normal distribution with mean µ and 

variance ��, then the sample mean �	 is the MVUE for µ. 

• The mean squared error of an estimator �
 of the parameter � is defined as:  

 

MSE (�
) = E[(�
 − �)�]    

 

4. Maximum likelihood estimator (MLE) 

• MLE obtains a point estimator of a parameter by maximizing the likelihood function. 

• If X is a random variable with probability distribution f(x;	�), where � is an unknown 

parameter.  

� 

Distribution of �H2  

Distribution of �H1  



CEN 343                                                      Chapter 5: Sampling Distributions and Point Estimation of 

Parameters  

 

6 

 

• Let ��, ��, …… . ��  be the observed values in a random sample of size n. Then, the 

likelihood function I(�) of the sample is:   

 

I(�) = 0�(��; �)	. 0�(��; �)…… . 0�(��; �) 
 

• Note that I(�) is now a function of only the unknown parameter �.  

• The Maximum likelihood estimator (MLE) of � is the value of � that maximizes L(�). 

 

 

Example 4:  

Let X be a Bernoulli random variable with probability mass function: 

 0(�; K) = LK�(1 − K)�)� 	; 	� = 0, 10							,														F5ℎ6789:6  

Where P is a parameter to be estimated.  

Find the MLE K
 of a random sample of size n. 

 

Solution:  

The likelihood function is:  

I(K) = 	K�N(1 − K)�)�N . 	K�@(1 − K)�)�@ …… . . K�O(1 − K)�)�O 

 F7	I(K) = K∑ �QOQRN 		(1 − K)�)∑ �QOQRN  

The MLE K
 is P that maximizes L(P) , or equivantely, lnL(P) 

S�I(K) = 	∑ �� 	S�K��T� + (� − ∑ ��)	ln	(1 − K��T� )  
 
X	Y�Z([)
X[ =	∑ �QOQRN[
 − �)∑ �QOQRN�)[
 = 0 (to find the max or min) 

 ⇒ ∑ �� − K
 ∑ ����T���T� = �K
 − K
 ∑ ����T�  

 K
 = 	∑ �QOQRN� 							K
	9:	5ℎ6	]6^�	F0	0(�; K). 
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Example 5:  

Let X be a normally distributed random variable with unknown mean µ and known ��.  

Find the MLE of µ for a random sample of size n. 

 

Solution:  

We Have:  0(�; �) = �
√�_� 	6

`(+`a)@
b@  

I(�) = ( 1
√2c�)�6

)∑ (�Q)*)@�@OQRN  

 S�I(�) = ln d �
√�_�e

� − ∑ (�Q)*)@
�@

��T�  

 
XY�Z(*)
X* = − �

�@∑ (�� − �̂)��T� = 0 

 ⟹∑ (�� − �̂)��T� = 0	
 ∑ ����T� − ∑ �̂��T� = 0 

 ∑ ����T� − n�̂ = 0 ⟹ �̂ = ∑ �QOQRN�   

which is the mean of the sample. 

 


